Statistics
Textbooks
Boundless Statistics
Other Hypothesis Tests
The Chi-Squared Test
Statistics Textbooks Boundless Statistics Other Hypothesis Tests The Chi-Squared Test
Statistics Textbooks Boundless Statistics Other Hypothesis Tests
Statistics Textbooks Boundless Statistics
Statistics Textbooks
Statistics
Concept Version 8
Created by Boundless

How Fisher Used the Chi-Squared Test

Fisher's exact test is preferable to a chi-square test when sample sizes are small, or the data are very unequally distributed.

Learning Objective

  • Calculate statistical significance by employing Fisher's exact test


Key Points

    • Fisher's exact test is a statistical significance test used in the analysis of contingency tables.
    • Fisher's exact test is useful for categorical data that result from classifying objects in two different ways.
    • It is used to examine the significance of the association (contingency) between the two kinds of classification.
    • The usual rule of thumb for deciding whether the chi-squared approximation is good enough is that the chi-squared test is not suitable when the expected values in any of the cells of a contingency table are below 5, or below 10 when there is only one degree of freedom.
    • Fisher's exact test becomes difficult to calculate with large samples or well-balanced tables, but fortunately these are exactly the conditions where the chi-squared test is appropriate.

Terms

  • p-value

    The probability of obtaining a test statistic at least as extreme as the one that was actually observed, assuming that the null hypothesis is true.

  • hypergeometric distribution

    a discrete probability distribution that describes the number of successes in a sequence of $n$ draws from a finite population without replacement

  • contingency table

    a table presenting the joint distribution of two categorical variables


Full Text

Fisher's exact test is a statistical significance test used in the analysis of contingency tables. Although in practice it is employed when sample sizes are small, it is valid for all sample sizes. It is named after its inventor, R. A. Fisher. Fisher's exact test is one of a class of exact tests, so called because the significance of the deviation from a null hypothesis can be calculated exactly, rather than relying on an approximation that becomes exact in the limit as the sample size grows to infinity. Fisher is said to have devised the test following a comment from Dr. Muriel Bristol, who claimed to be able to detect whether the tea or the milk was added first to her cup.

Sir Ronald Fisher

Sir Ronald Fisher is the namesake for Fisher's exact test.

Purpose and Scope

The test is useful for categorical data that result from classifying objects in two different ways. It is used to examine the significance of the association (contingency) between the two kinds of classification. In Fisher's original example, one criterion of classification could be whether milk or tea was put in the cup first, and the other could be whether Dr. Bristol thinks that the milk or tea was put in first. We want to know whether these two classifications are associated—that is, whether Dr. Bristol really can tell whether milk or tea was poured in first. Most uses of the Fisher test involve, like this example, a $2 \times 2$ contingency table. The $p$-value from the test is computed as if the margins of the table are fixed (i.e., as if, in the tea-tasting example, Dr. Bristol knows the number of cups with each treatment [milk or tea first] and will, therefore, provide guesses with the correct number in each category). As pointed out by Fisher, under a null hypothesis of independence, this leads to a hypergeometric distribution of the numbers in the cells of the table.

With large samples, a chi-squared test can be used in this situation. However, the significance value it provides is only an approximation, because the sampling distribution of the test statistic that is calculated is only approximately equal to the theoretical chi-squared distribution. The approximation is inadequate when sample sizes are small, or the data are very unequally distributed among the cells of the table, resulting in the cell counts predicted on the null hypothesis (the "expected values") being low. The usual rule of thumb for deciding whether the chi-squared approximation is good enough is that the chi-squared test is not suitable when the expected values in any of the cells of a contingency table are below 5, or below 10 when there is only one degree of freedom. In fact, for small, sparse, or unbalanced data, the exact and asymptotic $p$-values can be quite different and may lead to opposite conclusions concerning the hypothesis of interest. In contrast, the Fisher test is, as its name states, exact as long as the experimental procedure keeps the row and column totals fixed. Therefore, it can be used regardless of the sample characteristics. It becomes difficult to calculate with large samples or well-balanced tables, but fortunately these are exactly the conditions where the chi-squared test is appropriate.

For hand calculations, the test is only feasible in the case of a $2 \times 2$ contingency table. However, the principle of the test can be extended to the general case of an $m \times n$ table, and some statistical packages provide a calculation for the more general case.

[ edit ]
Edit this content
Prev Concept
Structure of the Chi-Squared Test
Goodness of Fit
Next Concept
Subjects
  • Accounting
  • Algebra
  • Art History
  • Biology
  • Business
  • Calculus
  • Chemistry
  • Communications
  • Economics
  • Finance
  • Management
  • Marketing
  • Microbiology
  • Physics
  • Physiology
  • Political Science
  • Psychology
  • Sociology
  • Statistics
  • U.S. History
  • World History
  • Writing

Except where noted, content and user contributions on this site are licensed under CC BY-SA 4.0 with attribution required.