Physics
Textbooks
Boundless Physics
Waves and Vibrations
Wave Behavior and Interaction
Physics Textbooks Boundless Physics Waves and Vibrations Wave Behavior and Interaction
Physics Textbooks Boundless Physics Waves and Vibrations
Physics Textbooks Boundless Physics
Physics Textbooks
Physics
Concept Version 7
Created by Boundless

Diffraction

Diffraction refers to various phenomena such as the bending of waves around obstacles and the spreading out of waves past small openings.

Learning Objective

  • Describe the phenomenon of diffraction, according to classical physics


Key Points

    • Diffraction is a wave phenomenon. It occurs with all waves, including sound waves, water waves, and electromagnetic waves such as visible light, X-rays and radio waves.
    • Diffraction effects are generally most pronounced for waves whose wavelengths are roughly similar to the dimensions of the diffracting objects.
    • The effects of diffraction are often seen in everyday life. All these effects are a consequence of the fact that light propagates as a wave.

Terms

  • interference

    An effect caused by the superposition of two systems of waves, such as a distortion on a broadcast signal due to atmospheric or other effects.

  • superposition

    The summing of two or more field contributions occupying the same space.


Full Text

Diffraction refers to various phenomena which occur when a wave encounters an obstacle. In classical physics, the diffraction phenomenon is described as the apparent bending of waves around small obstacles and the spreading out of waves past small openings. Similar effects occur when a light wave travels through a medium with a varying refractive index, or a sound wave travels through one with varying acoustic impedance.

Diffraction occurs with all waves, including sound waves, water waves, and electromagnetic waves such as visible light, X-rays and radio waves. As physical objects have wave-like properties (at the atomic level), diffraction also occurs with matter and can be studied according to the principles of quantum mechanics.

Diffraction effects are generally most pronounced for waves whose wavelengths are roughly similar to the dimensions of the diffracting objects . If the obstructing object provides multiple, closely-spaced openings, a complex pattern of varying intensity can result. This is due to the superposition, or interference, of different parts of a wave that travel to the observer by different paths. A good example would be diffraction gratings.

Intensity Pattern

Intensity pattern formed on a screen by diffraction from a square aperture.

The effects of diffraction are often seen in everyday life. The most striking examples of diffraction are those involving light. For example, the closely spaced tracks on a CD or DVD act as a diffraction grating to form the familiar rainbow pattern seen when looking at a disk. This principle can be extended to engineer a grating with a structure such that it will produce any diffraction pattern desired, like the hologram on a credit card. Diffraction in the atmosphere by small particles can cause a bright ring to be visible around a bright light source like the sun or the moon. A shadow of a solid object, using light from a compact source, shows small fringes near its edges. The speckle pattern which is observed when laser light falls on an optically rough surface is also a diffraction phenomenon. All these effects are a consequence of the fact that light propagates as a wave.

[ edit ]
Edit this content
Prev Concept
Refraction
Mathematical Represenation of a Traveling Wave
Next Concept
Subjects
  • Accounting
  • Algebra
  • Art History
  • Biology
  • Business
  • Calculus
  • Chemistry
  • Communications
  • Economics
  • Finance
  • Management
  • Marketing
  • Microbiology
  • Physics
  • Physiology
  • Political Science
  • Psychology
  • Sociology
  • Statistics
  • U.S. History
  • World History
  • Writing

Except where noted, content and user contributions on this site are licensed under CC BY-SA 4.0 with attribution required.