stress

(noun)

The internal distribution of force per unit area (pressure) within a body reacting to applied forces which causes strain or deformation and is typically symbolized by σ.

Related Terms

  • differential
  • strain

(noun)

The internal distribution of force per unit area (pressure) within a body reacting to applied forces which causes strain or deformation and is typically symbolized by $\sigma$.

Related Terms

  • differential
  • strain

Examples of stress in the following topics:

  • Stress and Strain

    • The ratio of force to area $\frac{F}{A}$ is called stress and the ratio of change in length to length $\frac{\Delta L}{L}$ is called the strain.
    • Deformations come in several types: changes in length (tension and compression), sideways shear (stress), and changes in volume.
    • The ratio of force to area $\frac{F}{A}$ is called stress and the ratio of change in length to length $\frac{\Delta L}{L}$ is called the strain.
    • Stress and strain are related to each other by a constant called Young's Modulus or the elastic modulus which varies depending on the material.
    • Using Young's Modulus the relation between stress and strain is given by: $\text{stress} = Y\cdot\text{strain}$.
  • What is a Fluid?

    • A fluid is a substance that continually deforms (flows) under an applied shear stress.
    • A fluid is a substance that continually deforms (flows) under an applied shear stress.
    • Solids can be subjected to shear stresses, and normal stresses—both compressive and tensile.
    • In contrast, ideal fluids can only be subjected to normal, compressive stress (called pressure).
    • Real fluids display viscosity and so are capable of being subjected to low levels of shear stress.
  • Thermal Stresses

    • Thermal stress is created when a change in size or volume is constrained due to a change in temperature.
    • Thermal stress is created by thermal expansion or contraction.
    • Thermal stress can be destructive, such as when expanding gasoline ruptures a tank.
    • Forces and pressures created by thermal stress can be quite large.
    • Another example of thermal stress is found in the mouth.
  • Elasticity, Stress, and Strain

    • Elasticity is a measure of how much an object deforms (strain) when a given stress (force) is applied.
    • Stress is a measure of the force put on the object over the area.
  • Modelling the Stress

    • Looking back at section on Angular Momentum Transport, we find that stress has units of angular momentum per unit time per unit volume or erg cm$^{-3}$ in cgs units; therefore, it is quite natural to assume that the stress is proportional to the pressure $f_\phi = \alpha P$.
    • We know that the stress is given by
    • We can combine the $\alpha$-stress with the angular momentum transport equation to give
  • Angular Momentum Transport

    • The viscous torque is the product of the viscous stress in the tangential direction, the area upon which the stress acts (the half-height of the disk is $h$) and the radius.
    • The viscous stress is proportional to the viscosity and the angular velocity gradient,
    • Both the previous equations give the stress.
  • Arches and Domes

    • They span large areas by resolving forces into compressive stresses and eliminating tensile stresses (referred to as arch action).
    • Because it is subject to additional internal stress caused by thermal expansion and contraction, this type of arch is considered to be statically indeterminate.
    • Because the structure is pinned between the two base connections, which can result in additional stresses, the two-hinged arch is also statically indeterminate, although not to the degree of the fixed arch.
  • Fracture

    • Fracture strength, also known as breaking strength, is the stress at which a specimen fails via fracture.
    • This is usually determined for a given specimen by a tensile test, which charts the stress-strain curve .
    • The bones in different parts of the body serve different structural functions and are prone to different stresses.
  • Poiseuille's Equation and Viscosity

    • Mathematically, viscosity is a proportionality constant relating an applied shear stress to the resulting shear velocity and is given, along with a representative diagram, (see ).
    • As shown, when a force is applied to a fluid, creating a shear stress, the fluid will undergo a certain displacement.
    • Different fluids exhibit different viscous behavior yet, in this analysis, only Newtonian fluids (fluids with constant velocity independent of applied shear stress) will be considered.
    • A proportionality constant relating an applied shear stress to the resulting shear velocity.
  • Stress and Strain

Subjects
  • Accounting
  • Algebra
  • Art History
  • Biology
  • Business
  • Calculus
  • Chemistry
  • Communications
  • Economics
  • Finance
  • Management
  • Marketing
  • Microbiology
  • Physics
  • Physiology
  • Political Science
  • Psychology
  • Sociology
  • Statistics
  • U.S. History
  • World History
  • Writing

Except where noted, content and user contributions on this site are licensed under CC BY-SA 4.0 with attribution required.