pentaradial symmetry

(noun)

a variant of radial symmetry that arranges roughly equal parts around a central axis at orientations of 72° apart

Related Terms

  • madreporite
  • water vascular system
  • ampulla
  • podocyte

Examples of pentaradial symmetry in the following topics:

  • Phylum Echinodermata

    • Echinoderms are invertebrates that have pentaradial symmetry, a spiny skin, a water vascular system, and a simple nervous system.
    • Adult echinoderms exhibit pentaradial symmetry and have a calcareous endoskeleton made of ossicles, although the early larval stages of all echinoderms have bilateral symmetry .
    • The ring canal connects the radial canals (there are five in a pentaradial animal), and the radial canals move water into the ampullae, which have tube feet through which the water moves.
  • Classes of Echinoderms

    • Of all echinoderms, the Ophiuroidea may have the strongest tendency toward 5-segment radial (pentaradial) symmetry.
    • Their early larvae have bilateral symmetry, but they develop fivefold symmetry as they mature.
    • Several sea urchins, however, including the sand dollars, are oval in shape, with distinct front and rear ends, giving them a degree of bilateral symmetry.
    • Although the basic echinoderm pattern of fivefold symmetry can be recognized, most crinoids have many more than five arms.
    • Sea cucumbers are the only echinoderms that demonstrate "functional" bilateral symmetry as adults, as they lie horizontally as opposed to the vertical axis of other echinoderms.
  • Characteristics of Vertebrates

    • Animals that possess bilateral symmetry can be divided into two groups, protostomes and deuterostomes, based on their patterns of embryonic development.
    • Echinoderms are invertebrate marine animals that have pentaradial symmetry and a spiny body covering; the phylum includes sea stars, sea urchins, and sea cucumbers.
  • Animal Characterization Based on Body Symmetry

    • Animals can be classified by three types of body plan symmetry: radial symmetry, bilateral symmetry, and asymmetry.
    • In contrast to radial symmetry, which is best suited for stationary or limited-motion lifestyles, bilateral symmetry allows for streamlined and directional motion.
    • Animals in the phylum Echinodermata (such as sea stars, sand dollars, and sea urchins) display radial symmetry as adults, but their larval stages exhibit bilateral symmetry .
    • This is termed secondary radial symmetry.
    • The larvae of echinoderms (sea stars, sand dollars, and sea urchins) have bilateral symmetry as larvae, but develop radial symmetry as full adults.
  • Symmetry of Functions

    • They can have symmetry after a reflection.  
    • In the next graph below, quadratic functions have symmetry over a line called the axis of symmetry.  
    • The graph has symmetry over the origin or point $(0,0)$.  
    • This type of symmetry is a translation over an axis.
    • Determine whether or not a given relation shows some form of symmetry
  • Chirality and Symmetry

    • Some examples of symmetry elementsare shown below.
    • In these two cases the point of symmetry is colored magenta.
    • The boat conformation of cyclohexane shows an axis of symmetry (labeled C2 here) and two intersecting planes of symmetry (labeled σ).
    • The existence of a reflective symmetry element (a point or plane of symmetry) is sufficient to assure that the object having that element is achiral.
    • (ii) Asymmetry: The absence of all symmetry elements.
  • Symmetry and Centricity

    • Think of pitch symmetry in terms of a musical "mirror."
    • Pitch symmetry always implies an axis of symmetry.
    • The pitch-space line shows that it has a different axis of symmetry—around E2.
    • Pitch-class symmetry is very similar to pitch symmetry, but understood in pitch-class space.
    • Mapping this on the pitch-class circle shows the passage's pitch-class symmetry.
  • Body Plans

    • Animal body plans follow set patterns related to symmetry.
    • Asymmetrical animals are those with no pattern or symmetry, such as a sponge.
    • Bilateral symmetry is illustrated in a goat.
    • Animals exhibit different types of body symmetry.
    • The sponge is asymmetrical, the sea anemone has radial symmetry, and the goat has bilateral symmetry.
  • Trigonometric Symmetry Identities

    • The trigonometric symmetry identities are based on principles of even and odd functions that can be observed in their graphs.
    • This symmetry is used to derive certain identities.
    • The following symmetry identities are useful in finding the trigonometric function of a negative value.
    • Cosine and secant are even functions, with symmetry around the $y$-axis.
    • Explain the trigonometric symmetry identities using the graphs of the trigonometric functions
  • Theoretical Models for Pericyclic Reactions

    • The opposite is true for the π*-orbital on the right, which has a mirror plane symmetry of A and a C2 symmetry of S.
    • Such symmetry characteristics play an important role in creating the orbital diagrams used by Woodward and Hoffmann to rationalize pericyclic reactions.
    • The symmetries of the appropriate reactant and product orbitals were matched to determine whether the transformation could proceed without a symmetry imposed conversion of bonding reactant orbitals to antibonding product orbitals.
    • If the correlation diagram indicated that the reaction could occur without encountering such a symmetry-imposed barrier, it was termed symmetry allowed.
    • If a symmetry barrier was present, the reaction was designated symmetry-forbidden.
Subjects
  • Accounting
  • Algebra
  • Art History
  • Biology
  • Business
  • Calculus
  • Chemistry
  • Communications
  • Economics
  • Finance
  • Management
  • Marketing
  • Microbiology
  • Physics
  • Physiology
  • Political Science
  • Psychology
  • Sociology
  • Statistics
  • U.S. History
  • World History
  • Writing

Except where noted, content and user contributions on this site are licensed under CC BY-SA 4.0 with attribution required.