Algebra
Textbooks
Boundless Algebra
Trigonometry
Trigonometric Identities
Algebra Textbooks Boundless Algebra Trigonometry Trigonometric Identities
Algebra Textbooks Boundless Algebra Trigonometry
Algebra Textbooks Boundless Algebra
Algebra Textbooks
Algebra
Concept Version 4
Created by Boundless

Double and Half Angle Formulae

Trigonometric expressions can be simplified by applying the double- and half-angle formulae.

Learning Objective

  • Simplify trigonometric expressions using the double and half angle formulae


Key Points

    • The double-angle formulae are a special case of the sum formulae, where α=β\alpha = \betaα=β.  They are useful when we want to find the trigonometric function of an angle that is double a special angle.
    • The half-angle formulae are also a special case, and are useful when we want to find the trigonometric function of an angle θ\thetaθ which is half of a special angle α\alphaα (in other words, θ=α2\displaystyle{\theta = \frac{\alpha}{2}}θ=​2​​α​​).
    • Although each half-angle formula has a ±\pm± sign, the sign that is applied in each case depends on the quadrant the angle falls in and the rules for applying signs to trigonometric functions.

Full Text

Double-Angle Formulae

In the previous concept, we used addition and subtraction formulae for trigonometric functions. Now, we take another look at those same formulae. The double-angle formulae are a special case of the sum formulae, where α=β\alpha = \betaα=β. In other words, they allow us to find the trigonometric function of an angle that is double a special angle. Formulae can be derived to find the sine, cosine, and tangent in such cases, and these formulae are useful in simplifying trigonometric expressions. 

Deriving the double-angle formula for sine begins with the sum formula that was introduced previously: sin(α+β)=sinαcosβ+cosαsinβ\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \betasin(α+β)=sinαcosβ+cosαsinβ.

If we let α=β=θ\alpha = \beta = \thetaα=β=θ, then we have:

sin(θ+θ)=sinθcosθ+cosθsinθsin(2θ)=2sinθcosθ\displaystyle{ \begin{aligned} \sin(\theta + \theta) &= \sin \theta \cos \theta + \cos \theta \sin \theta \\ \sin(2\theta) &= 2\sin \theta \cos \theta \end{aligned} }​sin(θ+θ)​sin(2θ)​​​=sinθcosθ+cosθsinθ​=2sinθcosθ​​

The double-angle formula for cosine can be derived similarly, and is:

cos(2θ)=cos2θ−sin2θ\cos(2\theta) = \cos^2 \theta - \sin^2 \thetacos(2θ)=cos​2​​θ−sin​2​​θ

Notice that we can apply the Pythagorean identities to get two more variations of the cosine formula:

cos(2θ)=cos2θ−sin2θ=(1−sin2θ)−sin2θ=1−2sin2θ\displaystyle{ \begin{aligned} \cos{\left(2\theta \right)} &= \cos^2 \theta - \sin^2 \theta \\ &= \left(1- \sin^2 \theta \right) - \sin^2 \theta \\ &= 1- 2\sin^2 \theta \end{aligned} }​cos(2θ)​​​​​=cos​2​​θ−sin​2​​θ​=(1−sin​2​​θ)−sin​2​​θ​=1−2sin​2​​θ​​

cos(2θ)=cos2θ−sin2θ=cos2θ−(1−cos2θ)=2cos2θ−1\displaystyle{ \begin{aligned} \cos{\left(2\theta\right)} &= \cos^2 \theta - \sin^2 \theta \\ &= \cos^2 \theta - \left(1- \cos^2 \theta \right) \\ &= 2 \cos^2 \theta -1 \end{aligned} }​cos(2θ)​​​​​=cos​2​​θ−sin​2​​θ​=cos​2​​θ−(1−cos​2​​θ)​=2cos​2​​θ−1​​

Similarly, to derive the double-angle formula for tangent, replacing α=β=θ\alpha = \beta = \thetaα=β=θ in the sum formula gives

tan(α+β)=tanα+tanβ1−tanαtanβtan(θ+θ)=tanθ+tanθ1−tanθtanθtan(2θ)=2tanθ1−tan2θ\displaystyle{ \begin{aligned} \tan{\left(\alpha + \beta \right)} &= \frac{ \tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} \\ \tan{\left(\theta + \theta \right)} &= \frac{ \tan \theta + \tan \theta}{1 - \tan \theta \tan \theta} \\ \tan{\left(2\theta \right)} &= \frac{ 2\tan \theta }{1 - \tan^2 \theta} \end{aligned} }​tan(α+β)​tan(θ+θ)​tan(2θ)​​​=​1−tanαtanβ​​tanα+tanβ​​​=​1−tanθtanθ​​tanθ+tanθ​​​=​1−tan​2​​θ​​2tanθ​​​​

The double-angle formulae are summarized as follows:

  • sin(2θ)=2sinθcosθ\sin{\left(2\theta\right)} = 2\sin \theta \cos \theta sin(2θ)=2sinθcosθ
  • cos(2θ)=cos2θ−sin2θ\cos{\left(2\theta\right)} = \cos^2 \theta - \sin^2 \thetacos(2θ)=cos​2​​θ−sin​2​​θ
  • cos(2θ)=1−2sin2θ\cos{\left(2\theta\right)}= 1- 2\sin^2 \thetacos(2θ)=1−2sin​2​​θ
  • cos(2θ)=2cos2θ−1\cos{\left(2\theta\right)} = 2 \cos^2 \theta -1cos(2θ)=2cos​2​​θ−1
  • tan(2θ)=2tanθ1−tan2θ\displaystyle{\tan{\left(2\theta\right)} = \frac{ 2\tan \theta }{1 - \tan^2 \theta} }tan(2θ)=​1−tan​2​​θ​​2tanθ​​

Example

Find sin(60∘)\sin(60^{\circ})sin(60​∘​​) using the function sin(30∘)\sin(30^{\circ})sin(30​∘​​).

Notice that 30∘30^{\circ}30​∘​​ is a special angle, and 60∘60^{\circ}60​∘​​ is twice its value. We will apply the double-angle formula for sine: sin(2θ)=2sinθcosθ\sin(2\theta) = 2\sin \theta \cos \theta sin(2θ)=2sinθcosθ.

In this case, we let θ=30∘\theta = 30^{\circ}θ=30​∘​​ because we want to solve sin(60∘)=sin(2⋅30∘)\sin(60^{\circ}) = \sin(2\cdot30^{\circ})sin(60​∘​​)=sin(2⋅30​∘​​). Substitute θ=30∘\theta = 30^{\circ}θ=30​∘​​ into the formula:

sin(60∘)=sin(30∘+30∘)=2sin(30∘)cos(30∘)\displaystyle{ \begin{aligned} \sin{\left(60^{\circ}\right)} &= \sin{\left(30^{\circ} + 30^{\circ}\right)} \\ &= 2\sin (30^{\circ}) \cos (30^{\circ}) \end{aligned} }​sin(60​∘​​)​​​​=sin(30​∘​​+30​∘​​)​=2sin(30​∘​​)cos(30​∘​​)​​

From the unit circle, we can identify that sin(30∘)=12\displaystyle{\sin (30^{\circ}) = \frac{1}{2}}sin(30​∘​​)=​2​​1​​ and cos(30∘)=32\displaystyle{\cos (30^{\circ}) = \frac{\sqrt{3}}{2}}cos(30​∘​​)=​2​​√​3​​​​​. Substitute these values into the formula:

sin(60∘)=2(12)(32)\displaystyle{ \sin{\left(60^{\circ}\right)} = 2\left(\frac{1}{2}\right)\left(\frac{\sqrt{3}}{2}\right) }sin(60​∘​​)=2(​2​​1​​)(​2​​√​3​​​​​)

Simplify:

sin(60∘)=2(34)=32\displaystyle{ \begin{aligned} \sin{\left(60^{\circ}\right)} &= 2\left(\frac{\sqrt{3}}{4}\right) \\ &= \frac{\sqrt{3}}{2} \end{aligned} }​sin(60​∘​​)​​​​=2(​4​​√​3​​​​​)​=​2​​√​3​​​​​​​

Half-Angle Formulae

The half-angle formulae can be derived from the double-angle formulae. They are useful for finding the trigonometric function of an angle θ\thetaθ which is half of a special angle α\alphaα (in other words, θ=α2\displaystyle{\theta = \frac{\alpha}{2}}θ=​2​​α​​). The half-angle formulae are as follows:

  • sin(α2)=±1−cosα2\displaystyle{ \sin{\left(\frac{\alpha}{2}\right)} = \pm \sqrt{\frac{1- \cos \alpha}{2}} }sin(​2​​α​​)=±√​​2​​1−cosα​​​​​
  • cos(α2)=±1+cosα2\displaystyle{ \cos{\left(\frac{\alpha}{2}\right)} = \pm \sqrt{\frac{1+ \cos \alpha}{2}} }cos(​2​​α​​)=±√​​2​​1+cosα​​​​​
  • tan(α2)=±1−cosα1+cosα\displaystyle{ \tan{\left(\frac{\alpha}{2}\right)} = \pm \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} }tan(​2​​α​​)=±√​​1+cosα​​1−cosα​​​​​
  • tan(α2)=sinα1+cosα\displaystyle{ \tan{\left(\frac{\alpha}{2}\right)} = \frac{\sin \alpha}{1 + \cos \alpha} }tan(​2​​α​​)=​1+cosα​​sinα​​
  • tan(α2)=1−cosαsinα\displaystyle{ \tan{\left(\frac{\alpha}{2}\right)} = \frac{1 - \cos \alpha}{\sin \alpha} }tan(​2​​α​​)=​sinα​​1−cosα​​

Although some of the formulas have a ±\pm± sign, only one sign is applied. The sign that is applied in each case depends on the magnitude of the angle. Recall that different signs are applied to trigonometric functions that fall in each of the four quadrants (according to the mnemonic rule "A Smart Trig Class").

Example

Find sin(15∘)\sin(15^{\circ})sin(15​∘​​) using a half-angle formula.

Recall that 30∘30^{\circ}30​∘​​ is a special angle, and note that 15∘=30∘2\displaystyle{15^{\circ} = \frac{30^{\circ}}{2}}15​∘​​=​2​​30​∘​​​​. We can thus apply the half-angle formula with α=30∘\alpha = 30^{\circ}α=30​∘​​:

sin(15∘)=sin(30∘2)=±1−cos(30∘)2\displaystyle{ \begin{aligned} \sin{\left(15^{\circ}\right)} &= \sin{\left(\frac{30^{\circ}}{2}\right)} \\ &= \pm \sqrt{\frac{1- \cos(30^{\circ})}{2}} \end{aligned} }​sin(15​∘​​)​​​​=sin(​2​​30​∘​​​​)​=±√​​2​​1−cos(30​∘​​)​​​​​​​

Substitute cos(30∘)=32\displaystyle{\cos{\left(30^{\circ}\right)} = \frac{\sqrt{3}}{2} }cos(30​∘​​)=​2​​√​3​​​​​, which is provided in the unit circle, and simplify:

sin(15∘)=1−322=2−322=2−34=2−34\displaystyle{ \begin{aligned} \sin{\left(15^{\circ}\right)} &= \sqrt{\frac{1- \frac{\sqrt{3}}{2}}{2}} \\ &= \sqrt{\frac{\frac{2-\sqrt{3}}{2}}{2}} \\ &= \sqrt{\frac{2-\sqrt{3}}{4}} \\ &= \frac{\sqrt{2-\sqrt{3}}}{4} \\ \end{aligned} }​sin(15​∘​​)​​​​​​​=√​​2​​1−​2​​√​3​​​​​​​​​​​=√​​2​​​2​​2−√​3​​​​​​​​​​​=√​​4​​2−√​3​​​​​​​​​=​4​​√​2−√​3​​​​​​​​​​

Notice that we used only the positive root because 15∘15^{\circ}15​∘​​ falls in the first quadrant and sin(15∘)\sin(15^{\circ})sin(15​∘​​) is therefore positive.

[ edit ]
Edit this content
Prev Concept
Angle Addition and Subtraction Formulae
Trigonometric Symmetry Identities
Next Concept
Subjects
  • Accounting
  • Algebra
  • Art History
  • Biology
  • Business
  • Calculus
  • Chemistry
  • Communications
  • Economics
  • Finance
  • Management
  • Marketing
  • Microbiology
  • Physics
  • Physiology
  • Political Science
  • Psychology
  • Sociology
  • Statistics
  • U.S. History
  • World History
  • Writing

Except where noted, content and user contributions on this site are licensed under CC BY-SA 4.0 with attribution required.