Calculus
Textbooks
Boundless Calculus
Inverse Functions and Advanced Integration
Inverse Functions: Exponential, Logarithmic, and Trigonometric Functions
Calculus Textbooks Boundless Calculus Inverse Functions and Advanced Integration Inverse Functions: Exponential, Logarithmic, and Trigonometric Functions
Calculus Textbooks Boundless Calculus Inverse Functions and Advanced Integration
Calculus Textbooks Boundless Calculus
Calculus Textbooks
Calculus
Concept Version 8
Created by Boundless

Derivatives of Exponential Functions

Graph of an Exponential Function

Graph of an Exponential Function

Graph of the exponential function illustrating that its derivative is equal to the value of the function. From any point $P$ on the curve (blue), let a tangent line (red), and a vertical line (green) with height $h$ be drawn, forming a right triangle with a base $b$ on the $x$-axis. Since the slope of the red tangent line (the derivative) at $P$ is equal to the ratio of the triangle's height to the triangle's base (rise over run), and the derivative is equal to the value of the function, $h$ must be equal to the ratio of $h$ to $b$. Therefore, the base $b$ must always be $1$.

Source

    Boundless vets and curates high-quality, openly licensed content from around the Internet. This particular resource used the following sources:

    Wikimedia.
    http://upload.wikimedia.org/wikipedia/commons/thumb/c/c4/Exp_tangent.svg/321px-Exp_tangent.svg.png CC BY-SA.

Related Terms

  • tangent
  • e
  • exponential
  • Subjects
    • Accounting
    • Algebra
    • Art History
    • Biology
    • Business
    • Calculus
    • Chemistry
    • Communications
    • Economics
    • Finance
    • Management
    • Marketing
    • Microbiology
    • Physics
    • Physiology
    • Political Science
    • Psychology
    • Sociology
    • Statistics
    • U.S. History
    • World History
    • Writing

    Except where noted, content and user contributions on this site are licensed under CC BY-SA 4.0 with attribution required.