Physics
Textbooks
Boundless Physics
Waves and Vibrations
Periodic Motion
Physics Textbooks Boundless Physics Waves and Vibrations Periodic Motion
Physics Textbooks Boundless Physics Waves and Vibrations
Physics Textbooks Boundless Physics
Physics Textbooks
Physics
Concept Version 10
Created by Boundless

Period of a Mass on a Spring

Motion of a mass on an ideal spring

Motion of a mass on an ideal spring

An object attached to a spring sliding on a frictionless surface is an uncomplicated simple harmonic oscillator. When displaced from equilibrium, the object performs simple harmonic motion that has an amplitude X and a period T. The object's maximum speed occurs as it passes through equilibrium. The stiffer the spring is, the smaller the period T. The greater the mass of the object is, the greater the period T. (a) The mass has achieved its greatest displacement X to the right and now the restoring force to the left is at its maximum magnitude. (b) The restoring force has moved the mass back to its equilibrium point and is now equal to zero, but the leftward velocity is at its maximum. (c) The mass's momentum has carried it to its maximum displacement to the right. The restoring force is now to the right, equal in magnitude and opposite in direction compared to (a). (d) The equilibrium point is reach again, this time with momentum to the right. (e) The cycle repeats.

Source

    Boundless vets and curates high-quality, openly licensed content from around the Internet. This particular resource used the following sources:

    "OpenStax College, College Physics. October 7, 2012."
    http://cnx.org/content/m42242/latest/?collection=col11406/1.7 OpenStax CNX CC BY 3.0.

Related Terms

  • amplitude
  • Restoring force
  • Subjects
    • Accounting
    • Algebra
    • Art History
    • Biology
    • Business
    • Calculus
    • Chemistry
    • Communications
    • Economics
    • Finance
    • Management
    • Marketing
    • Microbiology
    • Physics
    • Physiology
    • Political Science
    • Psychology
    • Sociology
    • Statistics
    • U.S. History
    • World History
    • Writing

    Except where noted, content and user contributions on this site are licensed under CC BY-SA 4.0 with attribution required.