Physics
Textbooks
Boundless Physics
Heat and Heat Transfer
Specific Heat
Physics Textbooks Boundless Physics Heat and Heat Transfer Specific Heat
Physics Textbooks Boundless Physics Heat and Heat Transfer
Physics Textbooks Boundless Physics
Physics Textbooks
Physics
Concept Version 10
Created by Boundless

Solving Problems with Calorimetry

Calorimetry is used to measure the amount of heat produced or consumed in a chemical reaction.

Learning Objective

  • Explain a bomb calorimeter is used to measure heat evolved in a combustion reaction


Key Points

    • Calorimetry is used to measure amounts of heat transferred to or from a substance.
    • A calorimeter is a device used to measure the amount of heat involved in a chemical or physical process.
    • This means that the amount of heat produced or consumed in the reaction equals the amount of heat absorbed or lost by the solution.

Terms

  • combustion

    A process where two chemicals are combined to produce heat.

  • heat of reaction

    The enthalpy change in a chemical reaction; the amount of heat that a systems gives up to its surroundings so it can return to its initial temperature.


Full Text

Calorimeters are designed to minimize energy exchange between the system being studied and its surroundings. They range from simple coffee cup calorimeters used by introductory chemistry students to sophisticated bomb calorimeters used to determine the energy content of food.

Calorimetry is used to measure amounts of heat transferred to or from a substance. To do so, the heat is exchanged with a calibrated object (calorimeter). The change in temperature of the measuring part of the calorimeter is converted into the amount of heat (since the previous calibration was used to establish its heat capacity). The measurement of heat transfer using this approach requires the definition of a system (the substance or substances undergoing the chemical or physical change) and its surroundings (the other components of the measurement apparatus that serve to either provide heat to the system or absorb heat from the system). Knowledge of the heat capacity of the surroundings, and careful measurements of the masses of the system and surroundings and their temperatures before and after the process allows one to calculate the heat transferred as described in this section.

A calorimeter is a device used to measure the amount of heat involved in a chemical or physical process. For example, when an exothermic reaction occurs in solution in a calorimeter, the heat produced by the reaction is absorbed by the solution, which increases its temperature. When an endothermic reaction occurs, the heat required is absorbed from the thermal energy of the solution, which decreases its temperature. The temperature change, along with the specific heat and mass of the solution, can then be used to calculate the amount of heat involved in either case.

Coffee-Cup Calorimeters

General chemistry students often use simple calorimeters constructed from polystyrene cups. These easy-to-use “coffee cup” calorimeters allow more heat exchange with their surroundings, and therefore produce less accurate energy values.

Structure of the Constant Volume (or "Bomb") Calorimeter

Bomb Calorimeter

This is the picture of a typical setup of bomb calorimeter.

A different type of calorimeter that operates at constant volume, colloquially known as a bomb calorimeter, is used to measure the energy produced by reactions that yield large amounts of heat and gaseous products, such as combustion reactions. (The term “bomb” comes from the observation that these reactions can be vigorous enough to resemble explosions that would damage other calorimeters.) This type of calorimeter consists of a robust steel container (the “bomb”) that contains the reactants and is itself submerged in water. The sample is placed in the bomb, which is then filled with oxygen at high pressure. A small electrical spark is used to ignite the sample. The energy produced by the reaction is trapped in the steel bomb and the surrounding water. The temperature increase is measured and, along with the known heat capacity of the calorimeter, is used to calculate the energy produced by the reaction. Bomb calorimeters require calibration to determine the heat capacity of the calorimeter and ensure accurate results. The calibration is accomplished using a reaction with a known q, such as a measured quantity of benzoic acid ignited by a spark from a nickel fuse wire that is weighed before and after the reaction. The temperature change produced by the known reaction is used to determine the heat capacity of the calorimeter. The calibration is generally performed each time before the calorimeter is used to gather research data.

Example: Identifying a Metal by Measuring Specific Heat

A 59.7 g piece of metal that had been submerged in boiling water was quickly transferred into 60.0 mL of water initially at 22.0 °C. The final temperature is 28.5 °C. Use these data to determine the specific heat of the metal. Use this result to identify the metal.

Solution

Assuming perfect heat transfer, the heat given off by metal is the negative of the heat taken in by water, or:

$q_{\text{metal}}=-q_{\text{water}}$

In expanded form, this is:

$c_{\text{metal}} \times m_{\text{metal}} \times \left( T_{\text{f,metal}}-T_{\text{i,metal}} \right) = c_{\text{water}} \times m_{\text{water}} \times \left( T_{\text{f,water}}-T_{\text{i,water}} \right)$

Noting that since the metal was submerged in boiling water, its initial temperature was 100.0 °C; and that for water, 60.0 mL = 60.0 g; we have:

$\left( c_{\text{metal}} \right)\left( 59.7\text{ g} \right)\left( 28.5^{\text{o}} \text{C} - 100.0^{\text{o}} \text{C} \right) = \left( 4.18 \text{ J/g}^{\text{o}} \text{C} \right) \left( 60.0\text{ g} \right)\left( 28.5^{\text{o}} \text{C} - 22.0^{\text{o}} \text{C} \right)$

Solving this:

$c_{\text{metal}} = \dfrac{- \left( 4.184 \text{ J/g}^{\text{o}} \text{C} \right) \left( 60.0\text{ g} \right)\left( 6.5^{\text{o}} \text{C} \right)}{\left( 59.7\text{ g} \right)\left( -71.5^{\text{o}} \text{C} \right)} = 0.38 \text{ J/g}^{\text{o}} \text{C} $

Our experimental specific heat is closest to the value for copper (0.39 J/g °C), so we identify the metal as copper.

[ edit ]
Edit this content
Prev Concept
Specific Heat for an Ideal Gas at Constant Pressure and Volume
Latent Heat
Next Concept
Subjects
  • Accounting
  • Algebra
  • Art History
  • Biology
  • Business
  • Calculus
  • Chemistry
  • Communications
  • Economics
  • Finance
  • Management
  • Marketing
  • Microbiology
  • Physics
  • Physiology
  • Political Science
  • Psychology
  • Sociology
  • Statistics
  • U.S. History
  • World History
  • Writing

Except where noted, content and user contributions on this site are licensed under CC BY-SA 4.0 with attribution required.