Calculus
Textbooks
Boundless Calculus
Inverse Functions and Advanced Integration
Techniques of Integration
Calculus Textbooks Boundless Calculus Inverse Functions and Advanced Integration Techniques of Integration
Calculus Textbooks Boundless Calculus Inverse Functions and Advanced Integration
Calculus Textbooks Boundless Calculus
Calculus Textbooks
Calculus
Concept Version 9
Created by Boundless

Trigonometric Substitution

Trigonometric functions can be substituted for other expressions to change the form of integrands and simplify the integration.

Learning Objective

  • Use trigonometric substitution to solve an integral


Key Points

    • If the integrand contains $a^2 − x^2$, let $x = a \sin(\theta)$.
    • If the integrand contains $a^2 + x^2$, let $x = a \tan(\theta)$.
    • If the integrand contains $x^2 - a^2$, let $x = a \sec(\theta)$.

Term

  • trigonometric

    relating to the functions used in trigonometry: $\sin$, $\cos$, $\tan$, $\csc$, $\cot$, $\sec$


Full Text

Trigonometric functions can be substituted for other expressions to change the form of integrands. One may use the trigonometric identities to simplify certain integrals containing radical expressions (or expressions containing $n$th roots). The following are general methods of trigonometric substitution, depending on the form of the function to be integrated.

Substitution Rule #1

If the integral contains $a^2-x^2$, let $x = a \sin(\theta)$ and use the identity: 

$1-\sin^2(\theta) = \cos^2(\theta)$

Substitution Rule #2

If the integrand contains $a^2+x^2$, let $x = a \tan(\theta)$ and use the identity:

$1+\tan^2(\theta) = \sec^2(\theta)$

Substitution Rule #3

If the integrand contains $x^2-a^2$, let $x = a \sec(\theta)$ and use the identity:

$\sec^2(\theta)-1 = \tan^2(\theta)$

Note that, for a definite integral, one must figure out how the bounds of integration change due to the substitution.

Examples

In order to better understand these substitutions, let's go over the derivation of some of them.

Example 1: Integrals where the integrand contains $a^2 − x^2$ (where $a$ is positive)

In the integral 

$\displaystyle{\int\frac{dx}{\sqrt{a^2-x^2}}}$

we may use:

 $\displaystyle{x=a\sin(\theta)\\ dx=a\cos(\theta)\,d\theta\\ \theta=\arcsin\left(\frac{x}{a}\right)}$

With the substitution, we get:

$\begin{aligned} \int\frac{dx}{\sqrt{a^2-x^2}} & = \int\frac{a\cos(\theta)\,d\theta}{\sqrt{a^2-a^2\sin^2(\theta)}} \\ &= \int\frac{a\cos(\theta)\,d\theta}{\sqrt{a^2(1-\sin^2(\theta))}} \\ &= \int\frac{a\cos(\theta)\,d\theta}{\sqrt{a^2\cos^2(\theta)}} \\ &= \int d\theta \\ &= \theta+C \\ &= \displaystyle{\arcsin \left(\frac{x}{a}\right)}+C \end{aligned}$

Example 2: Integrals where the integrand contains $a^2 − x^2$ (where $a$ is not zero)

In the integral 

$\displaystyle{\int\frac{dx}{{a^2+x^2}}}$

we may use:

 $\displaystyle{x=a\tan(\theta)\\ dx=a\sec^2(\theta)\,d\theta\\ \theta=\arctan\left(\frac{x}{a}\right)}$

With the substitution, we get:

$\begin{aligned}\int\frac{dx}{{a^2+x^2}} &= \int\frac{a\sec^2(\theta)\,d\theta}{{a^2+a^2\tan^2(\theta)}} \\ &= \int\frac{a\sec^2(\theta)\,d\theta}{{a^2(1+\tan^2(\theta))}} \\ &= \int \frac{a\sec^2(\theta)\,d\theta}{{a^2\sec^2(\theta)}} \\ &= \int \frac{d\theta}{a} \\ &= \frac{\theta}{a}+C \\ &= \frac{1}{a} \arctan \left(\frac{x}{a}\right)+C\end{aligned}$

[ edit ]
Edit this content
Prev Concept
Trigonometric Integrals
The Method of Partial Fractions
Next Concept
Subjects
  • Accounting
  • Algebra
  • Art History
  • Biology
  • Business
  • Calculus
  • Chemistry
  • Communications
  • Economics
  • Finance
  • Management
  • Marketing
  • Microbiology
  • Physics
  • Physiology
  • Political Science
  • Psychology
  • Sociology
  • Statistics
  • U.S. History
  • World History
  • Writing

Except where noted, content and user contributions on this site are licensed under CC BY-SA 4.0 with attribution required.